IL NUOVO CIMENTO Vor. LXIV A, N. 2 21 Novembre 1969

Further Exact Results
in Two-Dimensional Spinor Electrodynamics
with Nonvanishing Fermion Mass (°).

P. L. F. HABERLER
OERN - Geneva

(ricevuto il 2 Luglio 1969)

Summary. — The exact axial vector current in two-dimensional electro-
dynamics with nonvanishing fermion mass is constructed using methods
of Wilson and Brandt. It is shown that ji™(x) = 8,¢(z), where jp™(z) is
the exact unrenormalized axial vector current and ¢(x) is a pseudoscalar
canonical field. The problem of constructing the correct Lagrangian for this
model is also solved.

1. — Introduection.

In a previous paper (), which we refer to as I, an exact result for the un-
renormalized current j,°(#) in two-dimensional spinor electrodynamics was
derived. In this paper the corresponding axial vector current j{™(w) is con-
structed, using again the methods of WiLsoN (2) and BRANDT (?). In this case,
however, we have to rely more on the integral equations to specify the axial
vector current. Therefore we study the axial vector photon vertex II; (),
the axial vector photon-photon vertex F; ;(p, ¢) and the axial vector electron-
electron vertex I',(p, p') in some detail. We start off with the renormalized

(*) To speed up publication, the anthor of this paper has agreed to not receive
the proofs for correction.

(*) P. L. F. HABERLER: Nuovo Cimento, 63 A, 675 (1969).

(?) K. WiLsoN: to be published in Phys. Rev.

(®) R. BranDT: Ann. of Phys., 44, 221 (1967), where one finds all other relevant
references.
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equations following Brandt’s procedure (*) and show that most of the counter
terms, needed to make %(2)y,y,y(®) well defined, vanish or are superfluous.
We end up with unrenormalized quantities.. This is to be expected in this
model, since apart from the vacuum fluctuation diagrams, everything is
finite (5). The result that we get for the axial vector current serves as a check
for the results of I:

(1.1) Js (@) = &%}, (@) .

It is well known (¢) that in two-dimensional space-time (1.1) holds for the free
currents. This is because of the simple properties of the y-matrices (7).

It is supposed that (1.1) holds for the interacting (®) case also. In this
model (1.1) is nontrivial because the currents depend explicitly on the electro-
magnetic field. Therefore one has to convince oneself that (1.1) is really true
for the interacting case also.

Whereas in I, general principles like gauge invariance, charge-conjugation
invariance and the assumption of canonical commutation relations specified
Ju () completely, gauge invariance, for example, determines j{**(x) only partly.
The rest is supplied by dimensional arguments and the explict use of integral
equations. Using this machinery, we are able to prove (1.1). From this and

0, (@) = ¢, 7 jy (@) = 0
and the main result of I, it follows .that
(1.2) Js (@) = Fo(@),

where @(z) is a psemndoscalar canonical field and j{**(z) and j*™(x) are exact

(¢) R. BranpT: UMD-910, to be published in Phys. Rev.

(°) This is also due to the fact thaf an indefinite metric is.used.

(®) A. S. WicHTMAN: in Cargése Lectures in Theoretical Physics, 1964, vol. 2, edited
by M. LEvy (New York, 1967); See also B. KLAIBER: Lectures on soluble models in
field theory, Goteborg preprint (1969).

() We are using the following definitions: g%°=—gll=<1,

0o 1
PP = Yup*, —e,..=€"'=( )
—1 0

0 1 0 —1 1 :
) ) el o
1 0 1 0 0 —1

(%) H. LEEMANN and K. PoHLMEYER: Hamburg preprint (1969).
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quantities. A similar result was also obtained by POHLMEYER and LEHMANN ()
for ps (pv) coupling in two-dimensional space-time, except that they did not
show that ¢(z) is a canonical field.

With all these results in mind, we are able to construct the Lagrangian,
which reproduces the correct fleld equations with the correct gauge-invariant
current j;*(«). This problem was first emphasized by SoMMERFIELD (°) and
later by THIRRING (*°) and his collaborators. They observed that one has to
know the solution of the model in advance, to construct the corresponding
Lagrangian. SoMMERFIELD (°) also conjectured that in the case of nonvanishing
fermion mass, the task of finding the right Lagrangian should be not more
difficult than for the case of vanishing fermion masgs. This conjecture was
based on the observation that the free-field equal-fime commutators are mass
independent. In I, and in this paper, we show that the results for the free-
field case are true in general. But also in this model we are faced with the
paradox (!!) that we have to know the equal-time commutators beforehand.
Only then are we able to construct the Lagrangian. The only difference com-
pared to the approach of Sommerfield is the use of spacelike & in a quantity
like $(2)y,ys¥(@ +£), which simplifies the discussion considerably (12), but also
leaves us with a noncovariant Lagrangian. This brings us to another important
point, which is the rest mass of the photon. We construct the Lagrangian
both for u,=0 as well as u,# 0. In both cases we also remove the restric-
tion of the indefinite metric. For the pure electromagnetic case this is conve-
niently done by working in the radiation gauge.

For the case of the massive vector boson, we present some very convincing
arguments that we have found the right Lagrangian, but we cannot prove it.
This is partly due to the fact that the proposals of WiLson and BRANDT break
down for massive vector bosons (13).

The paper is arranged in the following way: in Sect. 2 we present a simpler
derivation of the main result of I. We construct the axial vector current and
derive and discuss the integral equations for IT,;(p), F«**(p, ¢) and I'“(p, p')
in Sect. 8. In Sect. 4, the question of gauge invariance of the axial vector
current is treated and some important equal-time commutation relations are
calculated. In Sect. 5, the Lagrangian of the model is constructed and its
consequences are displayed. We conclude with mentioning the consequences
and relevance of our results for other fields of current interest. For further
illustration, we give more details in the Appendices.

(°) C. M. SoMMERFIELD: Ann. of Phys., 26, 1 (1963).

(19) F. ScawABL, W. THIRRING and J. WEsS: Ann. of Phys., 44, 200 (1967).
(1) This point will be discussed in some detail in Sect. 5.

(2) C. R. HAGEN: Nuovo Oimento, 51 B, 169 (1967); 51A, 1033 (1967).

(*%) This was already observed by WirLsoN and BRANDT.
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2. — Simpler derivation of the results of I.

Our starting point in I was the following expression for the renormalized
current j,():

ju(@)=Jim (@3 £),
(2.1) | Jul@; &) =Mm{TP(@)y,p(@ + &) — 0,,(6) — C,,,(6) 4" (@) —
- Camq(g)A,'Q(w) - Ocpvq}.(‘f)A"”(x) - Gewl(&) :'7"{ Yy :} s

In this definition of the current, the renormalized coupling constant e was
divided out for later convenience. 7' means the time-ordered product, because
we consider at the beginning timelike as well as spacelike &.

Using dimensional arguments, it was found in I that C,,,,;(£) behaves
like & for £—0. As is well known, C,,,,, is directly related to the photon
renormalization constant Z,. If one calculates C,,,.,(§) to lowest order, one
finds that it does not vanish, as one would expect. This is due to the fact that
O\ urea(§) multiplies a function which behaves like £ for £— 0. Nevertheless
Cuve1(é) seems to be superfluous at least for three reasons. Firstly, calculating
the fourth-order contribution to C,,,,,(£) gives a vanishing result. Therefore
there is some indication that Z; is given exactly by (3¢)

1
%= 1F ex/6mm3’
i.e. Z, receives the only contribution from the lowest-order diagram, which
is the simple bubble.
Secondly, C,,,.: i8 only motivated because one wants to have

o O
(2.2) 3. 3ps II¥7(p)|gmo = 0

in the four-dimensional case, because it ensures that the residue of the pole
of the photon propagator is one and not a logarithmically divergent quantity (*¢).
In two-dimensional space-time, condition (2.2) is not any more necessary
because Z, is finite there. Thus there is no need of renormalization.

The third reason to drop C,,,,,; in the definition of the current is the most
important one. It introduces a wrong behaviour of II,,(p) when letting p— oo.

(1) P. L. F. HasBRLER 2nd 1. SAAVEDRA: Nuovo Cimenio, 49 A, 194 (1967).
(15) See, however, the approach of K. JoENsON, R. WILLEY and M. BAKER: Phys.
Rev., 168, 1699 (1967), who present some arguments that Z; is finite.
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In fact IZ,,(p) blows up in this case, which clearly contradicts the fact that
the so-called Schwinger term is finite in this model. From this, we see that
renormalization can introduce a nonphysical effect, thus supporting ref. ().

Because of all these facts, we remove C,,,,.(£) from the definition of the
current. Now, using the results of I (eq.(3.34)), one finds the following expres-

sion for j,(x) (*):
(2.3)  Julz; &) =E[B@)y, 9@ + &) —y,p@) Pl@ + £)]—

—eJ ,(£)(§-4) + (1—2Z7'(£)) i) ,
using

lim j,(2; £) = j,(2)

gives
(2.4)  ju@; &) =Z,(5)3[P@)y, (@ + &) —y, p@)p(@ + £)]—eZ, (&) I (6)(E-4).
Now we transform back to the unrenormalized quantities which we denote by
the superscript «un ». We have
A, =ARZ},
e= deo y
(2.5)

'l’=z:i %

043 = Zlejm=e, i

Therefore we find
2.6) ji(w; &) =3P @)y, v (@ + &) —y, v (@) §(z + §)] — ¢, Z,(5),(5)(§, 4) .
Now we take £ spacelike, because we do not want to destroy the canonical for-

(3%) Z,(&) is also completely finite in perturbation theory, but one has to keep u,,
the rest mass of the photon. finite. In the limit wy— 0, Z,(&) diverges. But there
exists a gauge where the zero-order propagator is given by D} = (g,,— 2k, k,/K?) /s —K*.
In this case Z,(§)[4-o is finite. Since Z,(Z) drops out of (2.9), these ambiguities do not
bother us. But to have everything well defined it is understood that the limit uz,— 0
is taken at the very end. Quantum clectrodynamics as limit of a vector-meson theory
is discussed in W. THIRRING: Principles of Quantum Electrodynamics (New York, 1968);
For a recent work on the subject. see also C. DE CALAN, R. STorRA and W. ZIMMERMANN:
Lett. Nuovo Cimento, 1. 877 (1969). As a final remark, we want to stress that electro-
dynamics can be formulated in a fully consistent way if one works in the radiation
gauge. See the remarks of Scet. 5 and the remarks of GRIFFITHS and BENDER: Harvard

preprint (1969).
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malism and use the following formula of I (%7):

-1

(2.7) lim &, J,(&, =——
&0 T

and obtain
1. 0
28)  7(@) = UM [P @py@ + H —rp (@) § (@ + O] — 2 g, 4%(2) .

Equation (2.8) is a surprising result, because it agrees with the result of THIR-
BRING et al. (**) for the case m,=0. From (2.8) it is very easy to obtain the
equal-time commutator of the currents:

(2.9) [io(@), Ga(@")Jor= = 8}8(x—=") -

In this case we were not forced to use eqs. (3.58)-(3.61) of I. Since j,(x)
is not dependent on A™(x), the calculation of the equal-time limits is straight-
forward (*¢).

3. - The axial vector current.

In the following the axial vector current is constructed using thereby very
much the work of BRANDT (4) on a related subject.

The basic vectors which are needed to obtain a finite axial vector current
are the following (8):

(3.1) 4 (z), e*:4,0,4%:(z), e*0,0,4"(x) .

Correspondingly, the operator product expansion (*¢) of the quantity y(z)-
“VuVs¥(@ +&) has the following form:

(32)  TH@)y,y 9@+ 6~ B ()6, 4°(2) + By(E)e,, A°9, 4 (2) +
+ By(£)e,, 070, 4 (2) + B,(6): $(@)y,7,9(@):

(*") A sign mistake crept in when deriving these equations in I. Understanding
8,8(x—y) a8 8] (x—y), restores the validity of the results of I.

(*®) Since in two-dimensional space-time ¢, is the only antisymmetric tensor
available, there are the only physical allowed vectors. One could also think of Ry(&)-
“Eun.0% A (x) A%(z).. As one easily can convince onself, Ry(¢) vanishes like £2, as £—0,
because of dimensional arguments.
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where T is the time-ordered product, because we have not yet specified in
which way & tends to zero. In the limit {—0, R,(£) become singular and
reflect the singular nature of @(@)y,y,v(@+§&). :404: and :9Py,y,v:. have
to be correspondingly defined.

From dimensional arguments, we have

E\(§)~ ¢,
Ry (§)~ &,
Ry(8)~¢,
R(§)~&,

(3.3)

for £— 0, within logarithmic factors.

We observe that the operator product expansion (eq. (3.2)) is ordered by
dimension. It starts with the most divergent terms and so on. This ordering
was suggested by WILSON (®) and i8 very useful, because in such a way one
easily finds the basic vectors. Denoting the axial current by

(3.4) J5 (@) = [ p(@)y*y*p(z).
we can invert (3.2) and write

3.8)  fil@)= &{Tﬁ(m)fysw(ﬁ +£) + B (§)e"* A, (=) +
+ Ri(£)e"* 1 4,8,4%: (z) + R(£)e**3,3, 4" (@) + B (8)it (@)} -

The generalized Wick product :A0A4: is in itself an expression of the form
(3.5) and that of A(z)d-A(x+£). Thus we write
(3.6) Jul@) = lim ji(z; £) ,
where
B.7)  fu@; &) = TP@)y.ys e + &) + By (§)e, A%(2) +

+ B (£)e,, A%(2)0, 4% + &) + By(£)e,,0%0,4"(z) + E,(£)jp(@)
with

E&)=¢&t,  Byub)=§&, Byb)~&, EB@E)~E

for £¢—0.
This expression will be studied in full detail. For this we define the axial
vector photon vertex I7;(p), the axial vector photon-photon vertex F; ,(p, 9),
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and the axial vector electron-electron vertex I;(p, »') from the Fourier trans-
forms (symbolically denoted by F) of the Green functions as follows (*):
(8.8)  FLTju(=) 4, =1L, (p)Di(p),
(8.9)  F(Tj;(»)4,(y)4,(2)) = F,(p, 9)D¥p)D(q) ,
(3.10) F{Tjpv@)¥(=)) = G(p) I i(p, p")G(p') +

+11; (p + ) D®(p + p')HD) (P, P")G(P") ,
where @(p), D, (q) and I (p,p') are the fermion Green function, the photon

Green function and the vertex function, respectively.
Equations (3.6) and (3.7) thus lead to the integral representations

@11)  IT(p) = f d;’;, {ie Tt y,7s@ (%) Wk, b —p) Gl —p) +

(2
+ Ey(k)euy— usP® 0, By(k) + E (k) T(P)}
312)  Foip,q)= f (—(2-1%[@ Tr 75 6(K) Ok, 71 )6 +p + g) +

(o’ e ,
+1 @ n),Ez(k + k) egk? Hopa(K'y p, g) + By(k) Fi,a(p, q)] ,

G18) I3, 2) =yt [ o Trrers B0 2, )6t —p + 2) +

[ dsk’ , , ot
+ (2—”); Ey(k + k') eus KP(K', p, ') kg + E, (k) (p, p')] 5

where (1°)

(3.14) Hoapyr = [92,9p2 0(K' + @) + 9a29p, (%' + p))(2m)* +
+ D&M p,(— k' —p—g, ¥, p, DD +p +q) .

gk Pk I1,,,, is the proper photon-photon scattering amplitude
which we discussed in Appendix B of I. (%, p, p') is
the proper electron-electron scattering amplitude (see
Fig. 1), O,,(k, p, ¢) is the proper electron-photon scat-
4 2 tering amplitude [e(k) + (P, #) —>e(k—p—q) + (2, ¥)]

Fig. 1. — Proper eleo- which satisfies the Bose symmetry condition

tron-electron scatter-
ing amplitude. 6,k p,9)= 6,.(k, p, 9)

(*%) We have written D,,(k)=g,, D(k*)+ k,k,D'(k?) and used the fact that
]‘w n",ap(klkzkak‘) = 0 ete.
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and the on-shell divergence conditions
70,k p, Q) = 0’6, (k, p, ) =0
(on the electron mass shell)
(3.15) K oK'y Py ') = D,o(p—p'— ¥)O¥(p', p—p'—¥', k') D, (') -

r= + + +eoedt +
a) b) c)
d)
H X i
: v .'
+ % ; + /\ + +0(e%)
e) f) 9)

Fig. 2. — The axial vector electron-electron vertex in orders ¢ and ef. a) yu¥s term;
b)-d) first term of integral (3.13); e) second term of integral (3.13); f),g) third term
of integral (3.13). For further details, see ref. (%).

Equation (3.13) is graphically illustrated in Fig. 2. From eqs. (3.12) and (3.14),
we already obtain an important result. Since H,,, is multiplied by %;, the
third term of (3.14) drops ouf because of

kP 5 (— % —p—gq, K, p,q)=0

leaving us with the lowest-order contribution which will be explicitly calculated
below.

The vertex functions in any order can be found from (3.11)-(3.14) by sub-
stituting the appropriate pure electrodynamic functions @, I',, 0,,, D,,, 1,44,
and $ as well ag the appropriate lower-order axial vertices in the right-hand
sides. The as yet unspecified subtraction functions E, are to be chosen in each
order so that the resulting integrands yield finite integrals. They are, a priori,
otherwise arbitrary. In this context the arbitrariness in the E, is the arbi-
trariness in the points at which the renormalization subtractions are made.

To choose a specific set {E,} one places normalization conditions in the
functions (3.11)-(3.13). The number of these conditions depends on the super-
ficial divergences v of the functions in question. In our case v;=1, ,=v,=0

27 — Il Nuovo Cimenlo A.
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(%.e. by naive power counting), therefore we expect only one subtraction. This
is indeed true as will be seen in the following. In four-dimensional space-time

vp=3, ¥,=2, vp=1. Therefore the following conditions are necessary for the

finiteness of /I3, F, ,, I',:

(3.16) E0)=0,

(3.17) 8.11,0)],..= 0,

(3.18) 2.9,IT, (p)], =0,

(3.19) 7% ,(0,0)=0,

(3.20) 557 For(8: Olomo— 505 Firk0, oo =0,
(3.21) P:(p’ ') V9=y3'=m = VYu¥s -

=9

In two dimensions only (3.10) is required. It guarantees the gauge invariance
of I} (p), which does not vanish, unlike in the four-dimensional case. This
peculiarity of two-dimensional space-time results from

(3.22) IR (p) =1I32(p) &,

a8 we shall see below.

The other conditions should hold without subtractions, in other words,
some of the F, should vanish. Therefore let us impose (3.16)-(3.21) on our
integral equations (3.11)-(3.13).

We start with (3.11) and get from (3.16)

(3.23)  By(b)ew=—io TryupsG(k) Ty (K, k) G(k) = ie* Try,de - G(E)

d
ks'aT'
Equation (3.17) gives rise to

9 .
(3.24) 3. Tr yuys G(k) I, (K, k—p) G(k—P)|s—o =0
and (3.18)

o 0 .
(3.26) 5;; a 16 Tr yys G(k) I(ky k— D) G(k— D)|s=0 = Es(k)(enagss + €upFar) -

In Appendices A and B we discuss these equations in the two lowest orders (*°).

—

(2°) P. L. F. HABERLER: Aota Phys. Austr., 25, 350 (1967). We would like to remark
that our definition of the vacuum polarization tensor II,,(p) differs in sign from that in
J. D. BjorgEN and S. D. DrELL: Relativistic Quantum Fields (New York, 1965).
Accordingly the photon propagator is defined in our case by D,,(k)= Dy, (k)+
+ Dpua(k) 1%(k) D,,,(k) whilst the above-mentioned authors use Dy, (k)= D,,.(k)—
— Dyya(k) T35 (k) Dy ™ (k).
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From this we see that the same remarks for F, are in order as for C,,,; in
Sect. 2. Since we do not want to run into contradiction with the limit
p— oo for II; (p) (or, in other words, with the limit m,—0), we drop E,(¢)
as well as condition (3.18). Therefore we already got rid of one subtraction
constant:

(3.26) By(£)

is withdrawn from (3.7).
We now turn to conditions (3.19) and (3.20) and impose them on (3.12).

We obtain
(3.27) fd’k Tr yuys (k) Ok, p, )Gk +p +9) =0,

%i T 945 O(8) Oralle, 2, 0)6(k + P)lomo = ituager Filk) ,
(3.28)

0 . .
3" Tr yuys F(k) Opa(ky 0, g)G(E + @)oo = LeurGoa En(k) .
Here we have made use of the fact that
(3.29) H,p,, = (27)*[90,9p2 0k’ + @) + 92295, 0(K' + D)] -
In Appendix C the lowest-order contributions to (3.27) and (3.28) is calculated.
From this we have the result that
(3.30) B E)=0.
In the following Section it will be shown that it is true in general.
To get an expression for E,(£), we discuss eq. (3.13) in conjunction with

condition (3.21). In anticipation of our result of Sect. 4, which is strongly
suggested by (3.30), we put E,(§) equal to zero. Then we obtain

(3.31) 1 Try,y,G(k) O(%, p, p')G(E—p +p') = —E (K)y,¥s -
Now it is well known that (4)

dzk
(3.32) —E(&)|e-o=— (27)=E‘(k) =2Z;'—1,

where Z;* is the usual vertex renormalization constant, which is 1 in order ¢°
and finite (*¢) in order ¢* and higher. In Appendix D, eq. (3.32) is explicitly
checked in lowest order.

Thus we have obtained expressions for all ;. FE;(£) and E (&) are determined
completely, whilst E,(£) and E,(¢) will be determined to all orders in the follow-
ing Section. The F, guarantee that the integral equations (3.11)-(3.14) are
well defined and satisfy the appropriate boundary conditions.
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Back in position space, we have the result that, with F,(£) given by the
Fourier transforms of (3.23), (3.26), (3.30) and (3.31), the limit (3.6) exists
and yields a finite local axial vector fleld operator. In particular, all of the
renormalized Green functions

(3.33) (Tjp@)p(@,) ... (@) P(,) ... PU.)4,, ) ... 4, (2,)

are finite in each order or perturbation theory. Following the discussion of
ref. (4), we find that (3.7) is unique to within overall constant factor.

4. — Gauge invariance of the axial vector current.

In the last Sections, the unique local axial vector current (3.6) was con-
structed, essentially using only the requirements of finiteness and Lorentz
covariance. Using (3.7), (3.26) and (3.32), we get the following expression
for ji(w; &):

41)  Gal@; &) = TP@)y,ys9(@ + &) + B,(£)e,, A%(2) +
+ E,(§)¢,, A%(%) 0, 4%(2 + &) + (1 — Z,)j, (@) -

In the following, the condition of local gauge invariance, i.e. the invariance
under

y(z) — exp [—ied(x)]y(x),
(4.2)
A4,(x)—~> A, @) +0,4(x),

will be imposed on j,(;£). It will be shown that j,(x; &) is indeed gauge
invariant and, conversely, that the requirements of gange invariance are suf-
ficient to determine ¥, and E,. In the course of the analysis, we construct
explicit expressions for H,(§) and FH,(£).

The mild assumption is made that the transformation (4.2) can be taken
ingide the &— 0 limit in (4.1).

Let us now determine the consequences of gauge invariance. Under (4.2)
the first term in (4.1) requires the factor

(4.3) exp[ie[A(x)— Az + &)]] =
~1 -Tie[e- 24(@) + 5 (¢ 0 A(@) + (e-a)szl(w)]—

—Z 1€ AE-DAW) + ¢ DARE- P AE)] -
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Actually we could drop all terms of O(£2) and higher, because we know that

(4.4) P@)y,ysp@ + & ~E

for £ — 0. But we want to show that E,(£) vanishes like &2 for £ going to zero.
The second term of (4.1) goes into itself and

(4.5) E,(£)e, 0% A(x) .

Apart from the term which goes into itself under (4.2), the third term gives
rise to the following extra contributions:
(4.6)  E,(5)e,,0"A(2)0, 4% + &) + B,(£)e,. 0" A(2)0,c° Al + &) =
= B,(£)£,,0"A(x)3,4%) + B,(£)e,.0" A(x)d,c°A(z)
since £E,(&)=0 from (3.7).
Notice that we did not drop the second term of (4.5), which would vanish

because of 9,0°A(x)=0. Thus we find that, apart from terms which vanish
for £—0, the transformation (4.2) induces in j;(; §) the change

(7)) Ojiw; &) = P@)uysp(z + &) [—ie{-/.}—;—’{--/..}]+ Fy(8) e A(2) +
+ E,(&)epa 0% A(x) 0, A°(2) + Ea(£) £4a 0* A(x) 0, 0°A() .
where /. and /.. are short-hand notations for

(£-0A(x) 4 3(£- 0y A(x) + $(&-0)*A()]
and

[§-0A(2)(§-0)A(x) + (£-0)A(x)(&-0)*A=)],

respectively.
Our task now is to determine the restrictions imposed on E, and E, by
the requirement that

(4.8) lim 87 (@; £)=0.

We shall first determine the forms the E,; must have in order that simply
<0|djs(2; £)|0> =0 under (4.6). Since <0[9,4%(z)|0> =0, we obtain

(4.9)  <0]07u(@, £)]0) = <OlF(2) yuysp(@ + £)|0) [— ie{ .} — ‘;—’{--/..}] +
+ By(8) £, 0% A(x) + Ey(E) £4a 0" A(2) 0,8° A() .
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Since (4.8) holds for arbitrary A(z), by requiring <{0|dja(x; §)|[0)=0 we
obtain the conditions that the coefficients of each of d*A(w), etc., must con-
tribute to zero to (4.9). Therefore we obtain (21)

(¢.10) By(§)e,. = eCOl@lyrepie + 0> £, ,
@11) By(€)esa= 5 <Op@lyareple + 60> £ub72
From (4.4) and (4.11), it follows immediately that

(12) BE)=0,

thus generalizing the result of the last Section, where we showed that it was
true in lowest order. Equation (4.10) is rewritten in the following form:

(4.10") B, (§)e,s = —8,d ()
where
(4.13) J5(8) = —i0|§(@)y, v, (& + §)|0> = Try,y,G(f),

G(¢) being the fermion Green function. Thus (32) (0|8ji(z; §)[0> =0 implies
(4.10) and (4.11). Conversely, if the E; have the form (4.10)-(4.11), then
<0|8j3(x; £)]0>=0. Since the forms (4.10) and (4.11) are identical with (22)
(3.23) and (3.30), it follows simply that <0|dj;(z; £)|0> = 0 is equivalent to
the conditions (3.16)-(3.21). Together with our previous results, this shows
that the gauge invariance of the vacuum expectation value of j; is equivalent
to the gauge invariance of the theory. Using the well-known arguments (),
one easily shows that <O0|dj;(z; £)|0> is equivalent to

(4.14) Gjulz, £)=10.
From (4.14), or already from (4.10), we deduce that

(4.15) P@)yysp@ + £)E,~ ieb, 5 (E) .

Finally, we get the following expression for ji(z; £) using (4.12) and (4.10'):

(4.16)  ju(@; &) = TP(@)y,y, (@ + &) — ek, J,(E) A%(w) + (1 — Z,) ju() -

(3!) The Lorentz covariant limit lsi_‘%(EBSp)=%E’g“p was used. This is done here
only for convenience, but will not be used otherwise. The O(£?) terms of (4.3) are not
any longer included because of (4.4).

(3*) R. BranDT: Ann. of Phys., 52, 122 (1969), and UMD-673.
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From (4.16) we see that —ef,J,;(£)4,(x) remains to be calculated. To do
this, we restrict ourselves to spacelike &:

(4.17) &=(0,&),
(4.18) — el AJ u5(E) = — €&, A Z, Ty yuys (—gy;é) .
=275 A tee, Jir =L Db Ay e 8 = — 2 Zydse
g 19118 Cele T = Sr51Lu6 T En/5a gy
where eqs. (4.13), (2.7) and (¥?)

(419) 736 = —[ax(w— m) + ) T, 8,6 = — 7, Try,3,5,6)

were used.
Therefore we find

€20) @i &) = PEayevl@ + O — = Dt + L —Z)fila)

Passing now to the unrenormalized quantities, using (2.5) and bringing j;(z)
on the other side, we end up with the following expression for the unrenor-
malized axial vector current:

@.21) 7503 ) = P @)y ™ (0 + 6 — 2 A6 -

j;“(x) is then defined by (3.6). Following the procedure of I, we observe that
(4.22) (@) =lim 5@ + & —§)

also holds. Therefore we define

(4.23) ja(@) =} lim [(@; &) + 7@ + & —4)].

Finally we obtain

@28) 7@ = lim (@™o + ) — ey (@) 5@ + ) — 2 Aie.
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Comparing (4.24) with (2.8), we obtain our main result
(4.25) (@) =€, (=) .
From I, we know that
8,"=(2) =0

and therefore
(4.26) £, i™(@) =0,
i.e. the curl of the axial vector current vanishes. Therefore we obtain
(4.27) Ju(@) = 0,9(@),
where @(x) is a pseudoscalar field. That this is true for the free-field case was
shown in ref. (¢), see also ref. (8) for the interacting case.

Now we want to show that ¢(z) is a canonical field. To prove this we use
(2.9) and (4.25)

sSun s5an sun san i z* ’
(4.28) [7o (@), 13°(@) Je-e = [2°(®), 5°(&")]e-e = 7 0] 6(x—x') .
On the other hand
(4.29) jo(@); 7@ )or = 0 [0,0(@); @(@)];eer -
Combining (4.28) and (4.29) we obtain
i

(4.30) [69(@), p(@)]ewr = — ~ O(x— ),
t.e. @(x) is a canonical field.

The interesting feature of eqs. (4.25), (4.27) and (4.30) is that they are

valid for the interacting currents.
Before turning to other equal-time commutators, we notice that

(431)  ,75™(@, &)= imo[F°(@)psp"(@+E) — 7y (@) P (@+E)]—2 6 0 4T (a) -
This follows from the field equations (4.16) and from

A"e”QA‘? =0.
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For later use the following equal-time commutators are calculated:

(4.32) [500 (@), 9@ )] ey = — VoYV V(@) Blx —=') .
In particular
(4.33) [E(@), p*(@)],e = — Y5 ¥ (@) 8(x — x') .

Furthermore we have

(4.34) [5(2), 42(")],_. =0,
(4.35) [2=(@), §2(2)),. = [i(@), ;@) ., =0,
(4.36) [j5°(@), 1@ oo = = 030(x— ).

5. — Construction of the proper Lagrangian.

In this Section, we are going to construct the Lagrangian for this model.
As one knows (°1°), this is a nontrivial problem. Due to the fact that the
current (**) j,(x) depends explicitly on the electromagnetic field, the usual
Lagrangian does not give rise to the correct field equations, with the correct
gauge-invariant current. Therefore, one has to alter the Lagrangian. Lorentz
invariance of the Lagrangian is also broken, due to the fact that we are using
spacelike & only.

In the following, three cases are discussed:

a) Lagrangian in the Gupta-Bleuler gauge; this necessitates the use of
indefinite metric;

b) Lagrangian in the radiation gauge;

¢) Lagrangian for a neutral vector meson, which carries a nonzero rest
masgs, in interaction with fermions.

We start with case a). The usual Lagrangian is given by (2¢)

1 . i _ .
(6.1) £= -3 A,,A4m 4 '{g A, AP —e A TV -+ 2 W“a#'/’—é aI‘W”'P_'mo:fﬁ’P: ’

(*) In the following all quantities are understood to be unrenormalized. For nota-

tional convenience we drop the superscript ¢ un»,
(2%) S. SCHWEBER: An Introduction lo Relativistic Quantum Field Theory (Evanston,

Ill., 1961). The sign of ¢ is reversed in our case.
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where

(6.2) 1Py (@) = Hm [P@) p(z + &) — <0|F(@)p(@ + £)[0)] .

We have also included a mass term for the photon, representing the fact that
Mo 18 put to zero at the very end of the calculations.
J,(x) is defined by

(6.3) J,@) = lim [$(@ + &)y, p(@) — O|F(® + £)7,p()[0>] .

To obtain the right Lagrangian, it is not enough to replace the nongauge
invariant current J,(z) by j,(2), eq. (2.8), since

(5.4) [31(2)y 06 Ay(2')]jmpr = — %‘-’ d(x—=x').

The correct’ Lagrangian density is given by (1)
1 ll’ 82
(6.5) L=—3A4,,4m 4 -2-‘3 A AF 4 5;’; Al —e A, j" +
i _ 1., _ - .
+ 5 PO — QP p—ma Pyl .
The term (e}/27)A?} destroys the Lorentz invariance and gives also rise to
a2 nonpositive definite Hamiltonian.
Both of these troubles can be cured if one works in the radiation gauge.

With it, we turn to the discussion of case b).
The radiation gauge is characterized by

(5.6) rAr=0, 1=1,2,3.
In two-dimensional space-time it follows from (5.6) that ()
{6.7) A= A1=0.

Since j,(#) only depends on 4,(x) and A,(z) is zero in this cage, it follows then
that nothing has to be changed in the Lagrangian:

1 . v _ t . _ _
(56.8) $=—Z B, Frr—eyA,j* + 3 W"aﬂ'l’_'é Oupyrp—m, Py: ,

where F,,=A4,,—A4,

(2%) See, e.g., L. S. BROWN: Nuovo Cimento, 29, 617 (1963).
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Here once more (1¢2¢) we notice the fact that the radiation gauge plays
a special role in field theory. It guarantees the positivity of the energy-mo-
mentum tensor in presence of massless particles. Also it is the only gauge where
an unambiguous transition from massive to massless vector boson can be
achieved.

Also we want to remark that due to the fact that the fermions have a finite
rest mass, there are no troubles with the masslessness of the photon, as pointed
out by ZumMmiNo (*?) for the case of the Schwinger model.

Let us now turn to a discussion of case ¢), the interactions of massive
vector bosons with massive fermions. Our main results should hold (?¢) in this
cage algo. Indeed, if one studies the results of ref. (1°), then one observes that
the commutator [j,, j,] does not depend on the rest mass of the vector boson.
Algo the vacuum polarization tensor is free from infra-red troubles, i.e. the
limit vector-boson mass going to zero can be taken unambiguously.

We have the following Lagrangian in this case:

1 o i _ e =
(56.9) 5?=—-—Z G,,G* +— B,B*—¢,B,J¢*+ 3 :pyl'a,.tp-——é O Pyup—my . Pyp. ,

2

where
Gll.v = B/t.v _Bv,p ’
B”.“ =0,

(5.10)

[B'(z), G*(2")),., = i0(x — =),

M, = rest mass,

J,(z) is given by (5.3).

This Lagrangian gives rise to field equations with a nonconserved current.
As in case a), we have to account for this fact, by adding a term B}(e}/27)
to the Lagrangian, thereby destroying the Lorentz invariance of .#. The
modified Lagrangian has the following form:

2
(11)  #=—F @07+ % B,B'+ B

€5
:57;—003”1"‘-*-

i_ i .
+ 5 POy — 3 FPrap—molPyl .

(%) See also, J. SCHWINGER: in Particles and Field Theory, Brandets Lectures, 1964,
vol. 2, edited by S. DEser and K. W. Forp (Englewood Cliffs., N. J., 1965).

(2") B. ZumiNo: Phys. Lelt., 10, 224 (1964).

(**) B. ZuMINO: private communication.
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This gives rise to the following Hamiltonian (1°):

©612)  H=[amot () = }[an (@) + (o7, — @,/ + B}~

—26,J, B, + 2i(py, 0,9 + Mo PP,
where we have introduced

2
M=m3+2, =0,
(5.13)
7’1=J1_ﬁ B.
T

Equation (5.13) indicates the fact that the mass of the vector boson is
changed (?°).

Having this Hamiltonian available, we are now in the position to calculate
the equations of motion of the following fields:

G°(z), B\{z), J°=), JY),
(5.14)
S(z) = ypp:.(x),
- n(z) = 1 Pysy . (@) = }igl{é[?l-’(m)}’sfp(‘” + &) —ysy(@) Pz + &)1},
' P(®) .

From (4.27) and (4.31) we obtain for ¢(z)

(5.16) Og(z) = 2im,z(z) ——% £410¢ By ()

and from (5.12), using (4.24)-(4.36) as well as (5.10), one gets

G9(z) = — M2 BNx) + €, J V(@) ,
Bo) = (1 00) @t g o100,

[

Jo@) = ~% 2 B\(x)— ' JY(z),

(5.17)
3 o Mz .
JYz) = _:_: m GY(z) + m ot J°(z) — 2myin(z) ,
R@) = i[26,B'8 + 2moJ* + $(*p)p—iFdiy] ,
8(@) = i[2Bn + i(*P)ysy — iPysdty] .

(**) P. L. F. HABERLER: Nuovo Cimento, 4T A, 929 (1967).



FURTHER EXACT RESULTS ETC. 425

Due to the mass term we cannot exactly diagonalize eq. (5.17). This shows
that the model gives rise to a nontrivial S-matrix and one has to use other
methods to solve it exactly. Unfortunately, all efforts (*) in this direction
have failed.

We want to mention that eq. (5.17) might be a good starting point to
construct a Sugawara (3!) model. We want to return to this problem in another
paper.

Another point should be made in connection with this model. Since the
equal-time commutator [j,(2), j,(2')],_, is also given by (2.9) in this case, the
following sum rule has to be true (10-2¢):

(6.18) fda’g“°(a=) — j;: ,

where p™(a®) is the spectral function of the vacuum polarization tensor with
nonvanishing photon mass. This is the same sum rule as we have derived
in I, and the same remarks are in order here (33).

6. — Conclusions.

In this work we continued the discussion of two-dimensional models de-
scribing the interaction of massive fermions with massless and massive photons,
respectively. The main aim of this paper was to approach the main result of I
by a different method. To do this we have studied the axial vector current
in extenso, thereby using again the methods of Wilson and Brandt. We were
able to prove the conjecture that

Jul) = €,75,(@) ,

thereby establishing the main result of I. As a by-product, some further
results were obtained. We were able to show that the j;(#) can be written
in the following way:

jf‘(w) = pq’($) ]

(%) In this connection the following work is also relevant: B. SiMoN: Nuove Cimento,
59 A, 199 (1969).

(31) A. SucawARA: Phys. Rev., 170, 1659 (1968); C. SOMMERFIELD: to be published.

(%) This is due to the fact that the vacuum polarization tensor stays finite, letting M,
going to zero. See in this conncction ref. (20),
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where ¢(z) is a pseudoscalar canonical field, thereby generalizing the free-field
results (*) to the interacting case.

The construction of the proper Lagrangian was discussed in some detail.
We were able to generalize the results of SOMMERFIELD (*), THIRRING et al. (°)
and HAGEN (*?) to the case of massive fermions. We also stressed the fact
that the radiation gauge plays a special role in theories involving massless
particles.

A short discussion of the model where massive fermions interact with mas-
sive photons showed that this model contains some nice physical features.
We believe therefore that its exact solution brings us close to the answer how
the dynamics of a realistic theory should look like.
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APPENDIX A

In the following the lowest-order contribution to I7,(p) is calculated.
From eq. (3.11) we have

dsk 1
5(2) —_— o e -— -— e ————
(A~l) IIF’ (P) =16 (2”)2 Ir 7#757.]‘__1”0 y’y'k—y'p—-mo
o 9% L1
0 (27‘)2 yl‘ysy.k_moy' y-k_mo
_ f ke e 1 - |
2 (2”)' apa apa }’p?s y'k-mo 7' }’.k__y.p _mo =0 .

In (A.1) only the unrenormalized parameters appear because we work in lowest
order.

The two last terms of (A.1) are the contributions from E,(k) and E,(k).
It is a simple task to calculate (A.1). For the evaluation of the traces one
has just to observe that

(A.2) VuVe = Gur + VsEur -
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Using standard techniques, one finally obtains

B3 __ & : dz4z(z—1)(sup* + P» )
(A.3) Hl‘p )(P) == 27—! ["- p’Z(Z— 1) + m: + 28[11} +
]

& & Y, + 14
+ E;; ot 67‘; el Bmf) 2) ="z (em—p.p,.lp )em(p?) ,
where
1
dzpiz(z—1 2 R
(A4) 0 (P?) =fpm’z(£—(l) +_—3n-: + ép—m R Pu=equp®.
0

Except for the term p?/6m3, which arose from our normalization condition (*°)
(A.5) 0i(P®) = e3(P%)

where pqu)(P?) is defined through

(A.6) 113 () = — (g — Du2IP") 0 (P") -

Furthermore we observe that

(A.7) PII5(p) =0,  PI5p)=0.

This was to be expected.

APPENDIX B

In this Appendix the fourth-order contribution to IT;:"(p) will be discussed
(¢ un » means unrenormalized). The following is explicitly shown:

(B.1) a) II3¢0)=0,
(B.2) b) I (p) = P ITns(p) =0,
(B.3) o) e (P°) = 0™ (P,  ILns"(p) = — euolT" 0 () -

We start with a). Using standard techniques (*°), one finds

l 1 1
B4) I J‘d’ d*k Tr .
S = (2m)* )‘ : TV g—me Py g+ ph—m,
1 1 1 .
: c - " .
4 V'q— My y"}’ q—yp—mg kt—ud  (27) J.d’qfd’k Tr puys
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1 1 1 .1 1
P q+yp—m J"}"!l""'"o ya‘)"ﬂ"“}"k""’moy Y q—m, k*— 3
1 1 1
bo_ | dsg|dx Tr e y .
u (2= )‘qu yevs q—moy yh—me " yk—yp—mq
1 1
Ve

Y q—yp—my (q—Ek)—put”

Setting p =0, doing the traces and taking into account the fact that the first
two terms of (B.4) are equal, one finds

=90 = — Sm?,e,, 9 2 { (@*+m 3) Eus— 2qp 67_2614%

s (0) == f f Vo @ —may P —md) [— ) —pm] T
8p'k.q_q15£—ilk'+gl"£‘q }

o—ma) (@ —m) T — k) — ]

+

Doing the k integration and doing some integrations by parts in g, one obtains

dmiesniey

(27)* f Lf(w 1)[ (P’+'In)’(p’+A’)

(4)(0) —

2m3 om} ]= :
+ T PR F T T a]

Ar=[miz + pi(l —2)])[z(l—=z) .

Next we prove (B.2); using (3.11), we find

1 1
B5)  PIEP) =G fd’ fd'k T g —m e gy E—m,

e Mf_mo ,,.py.q_;p_mo k’—l—/z: + @:T‘ f d:qfd-k Tr Py
1 1 1 L1 1
' ~q+y-p—moy'py'q—mo Vergtyk—m, yg—m; B—p}
1 1
(2 ) fdaqfdsk Tr yuys q__mo‘}’ yk—mo
1 1 1
VP yk—kp—m,  yg—yp—m @—Rr—

+

Using

1 1 . 1 1

=8 Y qg—m y.p?"q—}"f’ —my ?"9"7'?—""0_ Yq4—m ’
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i.e. the Ward identity, and making some obvious changes in the integration
variables, we get

» (4) S e:’ 3 g 1 = 1 ¢
PIL(P) = o f d !lfd ko —py—m T {7’“7’°y-g-—mo Yoy k—m,
1 1 i 8 1
Y g pr—ma "V yg—m Py —m, yg—m,
1 . 1 1 _
+ Y#?sy.q__moy yk—yp—m, ye‘}"q—}"_‘l’—mo
1 1 1 1 1
_y,,ysy.q_moy yk__mo‘}’ y-q.-_y—-p-__—mo+7F7’6y.q_mo}’°y,k_m°.
__1__ 1 LIS N P
Ve yq—m YuYsyp+y,q_mo 7’°y-k—m.,7 )"Q—mo}_

Unlike for the four-dimensional case, the use of (B.6)is reliable, because all
integrals are convergent. In the same way one shows that P*IT5% (p)=0,
whereby, using the fact that

(B.7) Preuyt=—yp,

from (B.2) it follows that

(B.8) I3 () = — (eu— 20 Bulp) 05" (P7) -

To prove (B.3) we first give the expression for IT;;'“(p). We have

H,"f,‘,“’(p) —_— (_:.el.)‘ fd’qfd’k Tr y,, L g Ye 7q+ ;.k—mo yQV‘Q'l‘ m°.
9, - 6‘ J'daq d*k Try, )
'?'q—y p—my kA —pd (2m)° Fyg—
e : 1 : 1
Yy t—m, "y h—yp—my yg—yp—mo (g—)*—

After having done the traces, we are left with the following expression:

(4) — 3 27 .
B9 I3°p)=—5 )‘f fak
{ 24P, — DGy + 4K, — 40,0, N
[(» — g)*— mZ][(k— p)*— m3] (k*— m3)(g* — m}) [(k —g)*— p4}]

20un(q* + m3) + 4[2¢u(¢s— D)) — G (@ —D)] ] .
(g*— m2)? (k2 — m3)((k— ¢)*— w3) [(g — »)*—m{]

+

28 — Il Nuovo Cimento A.
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Since we kmow (*°) that

(B.10) IT5°(9) = — (gu— pups/0") 0= (0")
it follows from (B.10) that
(B.ll) ennw(pl) - —II;:““)(P) .

From (B.11) it is straightforward to obtain

®12) ) =T )" f arq f -

! 4 N
[(p— 9)*—mG] (¢*— m}) (k*— m}) [(g— K)* — 1]
4m3

t o —m e —m) a— =@ e—my T
2mi— p*— i _
+ ) [ — 2y — mi) (@ — m) g — Y — mal[ (g — By — ]

1
T (B —m})[(k—p)*— mi] (*— mY) [(g —p)*— m:]} )

To get p**(p?) we use (B.2) and (B.8) in the following way:

PPIEd ) =0,

" P'IT5" (p) = p's" O (9")
and therefore

(B.13) o5 (0*) = 2" P[P 15 (p) .
A straightforward computation gives

e (0" = ¢"“(p") .

ArrPrENDIX O

In the following we discuss the lowest-order contribution to Fui(p, 9)-
From eq. (3.12) we have

1 ®(F ]
(O‘]_) pnl(P’ q) = f(2.‘n:)’ 71‘75}, Fo—m, @m ' Py q)‘}’ % +yp + 9 q—m,

"f @y 59 Gerps By(6— 0) + 59° guadps Br(k— )],
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where

02) OBk p,q)=—0 {y. .

1
yk+yp—mg yk+y-q—m, 7'} )

Therefore we get

(2) - 165 27,
©3) FiSe0=—g2 fdk

Ty {rm(y-k + mo)yoyk +yp + mayalyk +yp +ygtmi)
(B*—m3)[(k + p)*—m3][(k + p + ¢)*—m}]
4 Yu¥sly'E + mo)ys(yk + yg + mo)y,(yk +yp +ya + mo)} _
(B*—m3)[(k + g)*—m3][(k + p + ¢)*—mf]

— if(%—::;’ [8”, q;Eg(k — Q) + EuaPy Eﬁ(k _.p)] .

Now it is a trivial matter to calculate F,53(0, 0). Setting p =g =0, one readily
obtains the result that

(0.4) F53(0,0) =0 .

So condition (3.19) is fulfilled. We want to remark that the first two terms
of (0.3) vanish separately and that the integrals of (C.3) are absolutely
convergent.

We turn now to condition (3.20). From eq. (3.12) we see that H, is just
determined by this condition. Let us calculate

)
ap'; Fllnl(p’ 0)]9-0 .
From (C.3) we obtain

(C.5) 5167;3'#'1(?1 0)]pmo = Z;%:)}fd’k.

o [726 B + o)y (yE + o) yaly k + ma)yalyE + mo)
(k*— m3)* e

4 Yu¥s(VE + mo)y,(yF + mo)yaly-k + mo)yaly-F + mo)
(1 — m3)* +

4 Ye¥s(p°k + mo)pa(yE + o)y, (y-k + mo)paly-k + mo)} _
(%*—mg)*

fad% .,
— tf @n) E (k) (6urg1a + €u28va] -
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The first three terms of (0.5) give, when all nonvanishing terms are collected
together,

imqe 3m3
©6) Gy ate YuVe[Vaps¥a+ vayay, + y.yaw]f(k, m,).[2 + m:] =0

if one does the integrations. From this, it follows that
(C.7) B (k) =

t.6. the lowest-order contribution vanishes. The same is frue for all orders.
Therefore

(0.8) Eyk) =0,

(Apart from the proof of Sect. 4, this is true by dimensional arguments because
as 6 carries & mass, Fy(§)~ £ as £—>0.)

APPENDIX D

In the following it is explicitly shown that

(D.1) I, p) :':;-,'I'D'-m =Pu?s -
From eq. (3.13) we have
D.2) I, p") =

dk 1 1 1
=ylly§ (2n),7¢yk —my }’ﬂ'}’ 'yk 7?+‘J’P m y (k__pa)_

Doing the traces, thereby using yay,,y“=0, one gets

5(0 "n_ 2":mo_ AE[yu(y-k)— (k) yu+ (yp— yp")¥ul
L@ 2 =1+ i | o m) [e—p + 2 — milLGe— PP — 4

Introducing Feynman parameters in the usual way and doin;g the k-integration
gives
1

D3) I, p) —m,—— de-

: f dylyl r-p—yp")ay+y p(l—'.f/)]—[(? P—y0)2y+7 21—yt (r2—yp')ya}
{{p—2")2y + 2 —y)]'— (o —')ey — p*(L—y) + miy + w1 —9)}*

Setting p =p' and putting p =m,, gives immediately (D.1). It is always
understood that the limit u,—0 has to be taken at the very end.
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RIASSUNTO ()

TUsando i metodi di Wilson e Brandt si costruisce I’csatta corrente vetioriale assiale
nell’clettrodinamica bidimensionale con la massa dei fermioni che non si annulla,
Si dimostra che j5"(z) = 9,¢(z), dove jf,‘“‘(a:) & l'esatta corrente vettoriale agsiale non
rinormalizzata e @(z) & un campo canonico pseudoscalare. Si risolve anche il problema
di costruire la lagrangiana corretta per questo modello.

(°) Traduzione a cura della Redasione,

JIONOJIHHTENbHBIEC TOYHBIE Pe3YJbTATHI B ABYMEPHOH COHHOPHOH 3JIeKTPOAHHAMEKE
¢ Hemcdesasouleil ¢epMuoHHOH MACCOM.

Pesome (*). — Mcrons3ys Meronmbl Bmicowa M BpaHaTa, KOHCTpYMpYercs TOYHBIA
aKCHaNbHEIA BEKTOPHLU TOK B ABYMEPHOM 3NMEKTPOXWHAMIKE ¢ HeHcuesaromel ¢GepMHOH-
Holt Macco#i. IToka3psaercs, 4TO jom(2)== 0,9(z), Tne jp°() NpeAcTaBNSET HemepeROPMH-
POBaHHBI! aKCHANbHEIH BEKTOPHBLA TOK, @ (%) ECTb IICEBAOCKANAPHOE KAHOHAYECKOE TOJIE.
Taxke pelraercs npobnemMa KOHCTPYMPOBaHHS mpaBunbHOro Jlarpamxuasa s arolt
MoJemM.

(*) Iepesedeno pedaxyueii.



